A New Method for Solving Partial and Ordinary Differential Equations Using Finite Element Technique

نویسنده

  • Alexander Gokhman
چکیده

In this paper we introduce a new method for solving partial and ordinary differential equations with large first, second and third derivatives of the solution in some part of the domain using the finite element technique (here called the Galerkin-Gokhman method). The method is based on the application of the Galerkin method to a modified differential equation. The exact solution of the modified equation is the Galerkin approximation for the unknown function with exact values of the unknown at the nodal points. An application of the Galerkin-Gokhman method to a general second order nonlinear ordinary differential equation and to Navier-Stokes equations in the case of developing flow in a pipe is formulated. We also include the results of an application of the Galerkin-Gokhman method to two specific ordinary differential equations. One is: y − dy/dx = 0, the other one is a second order nonlinear equation describing fully developed turbulent flow in a pipe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite difference method for solving partial integro-differential equations

In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...

متن کامل

Finite integration method for solving multi-dimensional partial differential equations

Based on the recently developed Finite Integration Method (FIM) for solving one-dimensional ordinary and partial differential equations, this paper extends the technique to higher dimensional partial differential equations. The main idea is to extend the first order finite integration matrices constructed by using either Ordinary Linear Approach (OLA) (uniform distribution of nodes) or Radial B...

متن کامل

Homotopy Perturbation Method and Aboodh Transform for Solving Nonlinear Partial Differential Equations

Here, a new method called Aboodh transform homotopy perturbation method(ATHPM) is used to solve nonlinear partial dierential equations, we presenta reliable combination of homotopy perturbation method and Aboodh transformto investigate some nonlinear partial dierential equations. The nonlinearterms can be handled by the use of homotopy perturbation method. The resultsshow the eciency of this me...

متن کامل

The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system

A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...

متن کامل

The Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order

Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998